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Summary

The balance equations of mass, momentum, energy and entropy have been studied
in the paper. A comparison has been made between these equations and equations
describing conjugate thermodiffusion flows in solids.

1. Introduction

The paper deals with description on that class of mass flows with reference
to skeleton which can be approximated by equations of thermodiffusion in solid.
We will use the equations of mass, momentum, angular momentum, energy
and entropy inequality balances, given in typical form for the theory of mixture
[1]. All above equations will be analysed for using them in description of flows
closed with classical diffusion in solid. So we will present the balances for each
component and for mixture. In the balances for each component, in the source
term we must account for the influence of remaining components. However,
balances for entire mixture are identical as for one-component body.

Comparing the balances for the both approaches to the problem we should
underline equal rank of treating all components in the theory of mixtures. How-
ever, in thermodiffusion we analyse only one field of velocity of component
marked out i.e. skeleton. As the result, in thermodiffusion we obtain the more
formally simple set of equations describing the boundary problem. Certainly,
the both descriptions exist undependently one to another, but we can compare
them. Tt is also the aim of considerations.

* This paper has been written during my Humboldt fellowship at Ruhr-University in
Bochum.
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2. The Balances for Multi-Component Body

We will analyse the problem of exchange of mass, momentum, energy in
multi-component body and we will demand the satisfaction of the balances,
as in the theory of mixtures. We will present the balances in total and local form
respectively, for every component and for entire mixture, starting from the mass

balances and ending on the inequalities of entropy. We use the traditional no-
tations.

The mass balances have the following form :
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After decomposing the velocity v of component « on sum of the average velocity
w; and the increment u,* we obtain
do®
ot

+ [0%(we + wi®)], = oR°. (2.3)

The equation of equal rank is obtained after introducing the concentration
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Tt will be used to formulating the correspondence between the balances of thermo-

diffusion and the theory of mixtures. The momentum balance for the component
() has the form

d
= | Curdv = f (@ F& + OF)dV + f P#dA (2.5)
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and for entire mixture
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where
ey = o°F¢, Y& =0, ty=2X18, t;=1.
The energy balance has the following form for entire mixture
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After using the previous balances and introducing the following quantifies

oU =} o"U"%, oK =} 0" K", or =} o'r",
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‘we obtain
d
ez (U + K) = or + oFawi + J] o"Fifui — g;; + (tijwy);
: (2.8)
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In the above expression
2 O v = 3] o' Fiw; + ) 0" Fiu = oFqwi + 3 o"Fiui®
’ 3 o ’ 3 : ’ (2‘9)
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The entropy balance is as following for entire mixture
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o8 =208, or=20", q=2X4

The typical marks are used in the equations listed above. In particularly: o,
0% wi, v’ u; B o°F¢, @F, tf‘j, 0*U®, 0" K*, 0°S°%, 0°r%, ¢;*, denote respectively:
density of entire mixture, density of component (x), average velocity, velocity
of component «, increment of velocity with respect to average value, mass
source, mass force, transfer of momentum from remaining components, stress
tensor of component, internal energy, kinematic energy, entropy, heat source,

heat flux of component (x).

3. The Comparison of Theories

After presumption the equality of mass forces, internal and kinetic energies,
entropies of mass unit for each component

Fo=F,=...—=F,, KeKo..Ky SSo...28 (3.1)

the formal form of the balances in theory of mixtures leads to equations related to
thermodiffusion in solid state. They have the following form:
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Let analyse the case } o"u;"u;* =~ 0 two possibilities arise:

(&,) one marked out component (i.e. skeleton) p° occurs, and it arises for this
case

[90>Qﬂ;ﬂ: 1 (. e n]igw‘. %QOU.'O
e — oPvf = 0; 0 = 1,3,5,..., 8 =2,4,6,...] = ow; = o0

it denotes that the average velocity gw; is approached to velocity of component
of density o° Tt occurs during migration of dissipated component in skeleton.
(8,) a few components of compareable masses of ~ g% ~ p!-.. ~ o* and

identical velocities »> = --- = v;* exist and it arise

[95>9‘5;ﬂ—_—0, 1,2,...k, 0=k -+ 1,k—i—2,...,n]©gw.~g(295) 0.
B

Now if we achieve the substitution as following
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we will gain the full correspondence between the equations of theory of mixtures
and thermodiffusion. Also we will obtain the limitations which are laid on de-
scriptions of component migration in thermodiffusion in solid body. Ultimately

we have the set of equations

dc*
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The above set of equations let us describe thermodiffusional processes in solid
body after completion by physical equations and boundary conditions.
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