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THERMODIFFUSION IN VISCOELASTIC SOLIDS

JAN KuUBIK
Engineering College, 45-232 Opole, ul. Katowicka 48, Poland.

Streszczenie: Przedstawiono trzy rownowazne sformulowania zagadnien termodyfuzji w
ciele lepkosprezystym. Rozwazania przeprowadzono postulujgc posta¢ bilansow masy,
pedu, kretu, energii oraz entropii dla migracji masy i ciepta w ciel~ stalym. Nastepnie
otrzymano réwnania fizyczne procesu po przyjeciu postaci trzech rownowaznych poten-
cjaléow termodynamicznych.

Abstract: Three equivalent versions of the problems of formulation of thermodiffusion in
viscoelastic solids are presented. The balances of mass, momentum, angular momentum,
energy and entropy for migration of mass and heat in a solid are proposed. Next the
physical equations of the process for three equivalent thermodynamic potentials are
obtained. Physical equations of the process have been obtained assuming three equivalent
forms of thermodynamic potentials.

Pestome: B pabGoTe npeiacTaBieHbl TPH IKBHBAJICHTHbIC (POPMYIHPOBKH BONPOCOB Tep-
mouddy3un B Bsiskoynpyrom Tese. [poseiu paccyxk/ieHus, npeuiaras BUa OalaHCOB
MACChI, KOJIMYECTBA JIBUXKEHHMS, KMHEMATHYECKOIO MOMEHTA, JHEPrHW W IHTPOTH [is
NEPEHOCA MACChl M TEIUIa B TBEPAOM TeJjie. 3aTeM MOJyyH/M (U3HYECKHE YPAaBHEHUS
MPOIECCi TI0CIC NPUHATHS TPEX IKBHBAICHTHLIX TCPMO HHAMHYECKHX TIOTEHIIMAJIOB.

Résumé: On a présenté trois énoncés équivalents des problémes de la thermodiffusion
dans un corps viscoélastique. Les examens ont été faits en supposant la forme des bilans
de la masse, de la vitesse acquise, du moment cinétique, de I'énergie et de I'entropie pour
la migration de la masse et de la chaleur dans un corps solide. On a obtenu I'équation
physique du processus aprés avoir admis trois potentiels thermodynamiques équivalents.

1. INTRODUCTION

Mass diffusion in a solid is a physical process often applied in new
technologies such as diffusive binding of heterogeneous materials, accelerated
heat treatment of fresh concrete, protective coating of metals (for instance
aluminized coatings). Flows of a diffusive character occur also in many
corrosive processes (see [18]). Diffusion processes belong to the physical
phenomena which are usually coupled with the effects of other fields, of
which heat flows, electric flows or stress states are the most frequent. The
most important effect is due to heat flows which activate mass migration.
Coupling of heat and diffusive flows leads to thermodiffusion. Experimental
results concerning heat treatment of curing concrete [15] are a good example
of such couplings, although heat exchange and moisture exchange in curing
concrete are much more complex because of the porosity and not comple-
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ted hydration of concrete. Pressing of fresh concrete used for acceleration of
its setting and curing proves that the stress field is also involved. Physically
similar phenomena take place during diffusive binding of different materials,
e.g.. metals with ceramics. The processes proceed at elevated temperature,
often in vacuum and under the pressure exerted on the elements being
joined. In view of the facts mentioned above, the formulation of a general
theory in which interaction of diffusion field, stress field and heat flow field
should be taken into consideration seems necessary. Thermodiffusion is just
the theory satisfying these conditions. Its preliminary formulations given by
PopstriGAcH and Pawirina (1962) were based on the monograph by de
Groot and Mazur (1951). This theory was fully and systematically develop-
ed by Nowacki (1972). Lately some solutions of boundary problems have been
obtained for elastic thermal diffusion (see [7], [12]). The most impor-
tant experimental results and the references are given in [11], [12],
[15], [16].

In this paper we shall deal with linear viscoelastic thermodiffusion. Thus,
the memory of material will be taken into account both in mechanical and
thermal-diffusive domains of the problems. Therefore constitutive equations
derived for thermodynamic parts are derived in the way different from that
applied to the elastic range.

The considerations are based on the system of five balances, determining
the mutual interaction of thermal, diffusive and stress fields. This mass
balance will be formulated only for the migrating component. The balances
of momentum, angular momentum and the inequality expressing the increase
of entropy have the classical form in which mass diffusion is not taken into
account. The energy balance in which streams and sources have the compo-
nents independent on mass, heat and momentum flows will have a different
form. Hence, it follows that the interaction of mass, momentum and energy
flows, occurring in thermodiffusion, will be included in the balance energy.
The general expression of internal energy will be assumed as the functional
depending on the whole history of the process, i.e., history of deformation,
entropy and concentration. In linear problems we shall only approximate the
functional of internal energy by linear and square functionals. This function-
al, being differentiated and introduced into the final inequality of
process, after a suitable arrangement will give a set of physical equations for
the process, determining the stress tensor, temperature and chemical poten-
tial as well as mass and heat streams. From the remaining components of the
final inequality we obtain the dissipation function which can be used for
investigations of properties of relaxation function centre. As the final result
we obtain the conjugate set of thermodiffusion equations which, together
with the set of initial-boundary conditions, allow us to determine the
displacement field. entropy and diffusion field in the viscoelastic body.
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The equations of viscoelastic thermodiffusion can be also formulated
using the functional of free energy, obtained from internal energy as a result
of Legendre transformation. In the functional the following histories will
occur, namely those of the stress tensor, temperature and concentration.
Transformations analogical to those in the case of internal energy yield the
generating equations for the stress tensor, entropy and chemical potential.
The generalized displacement equations and the generalized equation of
thermodiffusion are the final result of such an approach.

In this paper, apart from the mentioned alternative approaches to visco-
elastic thermodiffusion, an additional one will be analysed. It allows a deeper
understanding of the structure of thermodiffusion equations in the viscoelas-
tic body.

The presented approach to viscoelastic thermodiffusion is intended for
analysis of thermodynamical foundations of the problems. The methods of
solving the given boundary problems on the basis of the variational theorems
are described by Wyrwat [16], [17].

2. THERMODIFFUSION BALANCES

Mass migration will be analysed with respect to the skeleton in a two-
component body, the movement of the migrating component being referred
to the crystal lattice of the stationary skeleton. Mass migration is caused by
both the production of mass source r, and the substance supply from the
outside due to the existence of the mass flux j,. The mass flow is influenced
by the stress field in the medium ¢;; and temperature © and the mentioned
fields are also conjugated, like in the case of thermoviscoelasticity. The
source and flux of energy will be completed. The source of energy will consist
of 3 elements, i.e., heat element (or, — the heat source), mechanical element
(oF;v;, oF; being body force, v; — particle velocity, and ¢ — medium density)
and diffusive element (Mc, M is potential of the diffusing component and c,
its concentration). Similarly, the energy flux will contain heat element
(¢; — heat flux), mechanical element (Py;, P, = o;;n; being surface force,
0;; — stress tensor and n; vector of the normal) and diffusive element (Mj,
Ji being the flux of mass flowing in time unit through an isolated, elementary
surface plane). These fields are the functions of coordinates x;, time ¢ and will
be referred to the initial body configuration.

The presented quantities will occur in balances of mass, momentum,
angular momentum, energy and entropy, which in the case of viscoelastic
thermodiffusion have the following forms:

1. Balance of diffusing mass

& Jocdv = [rdv. (2.1)
Vv Vv
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2. Balance of momentum

d . ;
5 [ovidV = [oFdV + [ PdA. (2.2)-
4 v A
3. Balance of angular momentum
l . ;
‘I— ‘ Qﬁijk.\'jvde = ‘ Qi'ljkijl\dV + ‘ f:iijijdA . (23)
dty v 4

4. Balance of energy

d 1 . ;
0 [Q(U+ 5 Uil )dV = |(or; +oFv)dV+ |(Pv;—qm— Mjin;))dA.  (24)
aty Z v A

5. Inequality of entropy increase

(ﬁ

I 1
:Tz [oSdV> = ;!—TqinidA. (2.5)

vV

The local forms of balances (2.1)2.5) are the following:

e¢ =73 —Jii (2.1y

QU,‘ = QFi+Uij-j’ (22)I

O-l'j = O'J-,-, (23)l

oU = or, +0i; €5 — i — (Mji) ;s (2.4)
c_ory G 4T

- il PESELL i 5Y

oS T T + T2 (2.5)

In above equations U, ¢S, T, ¢, V, and A denote internal energy and
entropy of the volume unit, temperature, Ricci permutation symbol, volume
and surface of the medium, respectively, (-) = ( )/ct.

Further transformations of the last set of equations (2.1)«2.5)" yield the
following inequality:

It should be satisfied for each real flow of heat, mass and momentum in a
solid body, independently of the physical properties of the material.

Let us now introduce two new functions, i.€., increments of temperature
O(x, t)=T(x, 1)—Ty(x, ty) and concentration c(x, t) = ¢, (x;, t)—co(x, o)
where T and ¢; denote the temperature and concentration at time ¢, and T,
and c¢,. their values in the reference configuration, characterized by the
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absence of stresses in the medium. By introducing these quantities into the
inequality (2.6) we obtain:
9:0,;

0

= 0. 27

Inequality (2.7), completed with the constitutive assumptions determining
the form of physical equations, especially that of internal energy, allows us to
determine the first version of physical equations of thermodiffusion. The
histories of deformation ¢;(s), concentration ¢(s) and entropy oS(s) are the
histories of the process A'.

Let us introduce a new thermodynamical functional, i.e., free energy oA,
determined by the relation:

04 = U —00S, (—oU = —pA—00S—005). (2.8)
Introducing ¢4 from (2.8) into the final inequality (2.7), we obtain:
p . : T 40
_QA_QS@+QMC+GUSU_,]1M,1_ T' 2 0 (29)
0

This inequality, together with relation (2.8), was used for determination of
thermodiffusion equations, presented in [11]. We shall also use another
thermodynamical functional ¢K, determined by the relationship:

oK =pA4—9oMc, (—A= —K—-M:é—Mo). (2.10)
The following final inequality is connected with the functional oK:
: ; - _y 4:0,;
_QK_QS@—wQ('M+O-ij8ij—JiM,i_ T‘ 20 (211)
0

Obviously, in three different versions of thermodiffusion equations present-
ed above, the histories of the process and generating functionals determining
the problem are different. All these versions (there are six of them) are in
principle equivalent, but their practical applications depend on the available
experimental data, which favour the given version, e.g., that using free energy
as the basic functional of the problem.

3. GENERATING EQUATIONS

In the previous item only a kind of the fields interaction was considered.
Now we shall specify physical properties of the considered medium, which is
described in so-called constructive assumptions.

To this end we give forms of those assumptions connected with the final
inequalities (2.7), (2.9) and (2.11)

\
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3.1. INTERNAL ENERGY oU

Histories of strain ¢;(s), entropy oS (s) and concentration c(s) are connect-
ed with the functional

o

oU = oU(A4") = ¢ % (s(s). 0S (s),¢(s)). (3.1

s=

Thus, the problem is determined by the final inequality

— U +oM¢+ 0,6+ 08O —j;M ; — q";z 1>0 3.2)
and the generating equation
QU = ¢ (4" (1=9): 4" 1),
0;j = SEO(AI(t—s);Al(t)),
0= ;QO(A‘(I—S);A‘(I)), (33)
M = .,:{)(A‘(t—s);A‘(t)),
Ji= (;}O(grad M), ¢ = Z”SO(grad O).

In the case of linear problems, the functional oU should be approximated
by the linear and square functional of the form:

oU = oUo+ [ Dy(t—1)é;(t)dr+ | B'(t—7)S(r)de

o ¢

t

+ | n(t=1)é(r)dr

=

1 . na : ’ ’
+§ [ Eijia(t =7, =1")€;;(7) 4 (t") drdr

= QU

+ [ oht—1,t=1)£;(0)S (") drdr’

1 1 . ]
+ ) [[m'(t—1,t=7)S(2) S (') dudt’
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n

+ i Mt—1,t—1)¢(1) S (') dedr’

1

+ 5 [[nt—1,0=7)¢é(x) é(v) dudr’

N |

113
+ [ @t —1,t—=7)§;(x) ¢ (v') drdr' + O (%) (3.4)
where U, is the value of internal energy in the reference configuration. The
relaxation functions D;;, B, m, E;z. @fj, m', n, I' and @,; are continuous for
120, 7" > 0 and disappear for 1 <0 and ¢’ < 0. Internal energy oU after its
differentiation is put in (3.2) from which, after a suitable arrangement, we
obtain the following set of generating equations for:

1. Stress tensor

0;;(t) = D;;(0)+ __[ Ejju(t—1,0)€(r)dr
+ " (Dilj(O,I—T)S(T)dT+ ‘ @0, t—1)é(r)de. (3.5)

xL

2. Temperature

O =0+ [ ¢;(t—1,0)¢;()dr

+ }ml(t—t,O)S(r)dr-k ,f P(it—1,00¢(r)dr.  (3.6)

— o - &

3. Chemical potential

M(t) = n(0)+ rj ®D;i(t—71,0)&;(r)dr

+ l‘ n(0,t—1)é(r)dr+ | 1O,t—1)S(t)dr. (3.7)

x

4. The inequality from the remaining components of (3.2)

t

_-" ot

i D;;(t—1)&;(r)dr + j—(:;ﬂl(r—r)S(t)dr
e 1 409 ;
I 5 — M. — =20, 38
+—j1 6tn([ 1) é(r)dt+ Q' —jiM ; (T 0. (3.3
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In this case, the dissipation function ©Q, has the form:

119
) ” r Eija(t—1,t—1") &;(1) &, () drdt’
\ ‘frcp (=, 1=7) (1) S (¥) dede
1"'[ O it (t—1,t—1)$ (1) $ () dude
+2_j_, P 1,t—1)S (1) S (') drdt
0

Ea _” F}d)ij(t_r’I_T,)éij('t)é(f/)dtd‘t'

¢

Il(t—r t—1')¢é (1) S(t) drdr’. (3.9)

From the postulate that the inequality (3.8) be valid for each thermodiffu-
sion process, we get immediately:

< Dy(t—1) =0, —/3 b=, ] =1
t t

whereas for the homogeneous thermal field (© ; = 0) and chcmlcal potential
(M; =0) we have:

0 =0, (3.10)
Thus, for both streams we obtain the following constraints
—jiM;>0 and —¢0;>0 (3.11)

from which it results that constitutive equations for the streams can have
only the following form:

—kiM ;g = ~K;0, (3.12)

that corresponds to classical Fick—Fourier equations.

Thus, we have obtained a set of physical equations determining the
thermodiffusion process. ,

Taking account of egs. (3.4)+3.7) and (3.12) in the energy balance (2.4)
and neglecting non-linear terms Q', we obtain:

or,— TooS+(K;0 ), = 0, (3.13)
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ory — TooS + [Kin( [ (Pilj(f—f,o)éij(f)df

t F §

+ [ m(@—-1,0S@)dr+ [ I'(t—1,0¢()dr)]u=0. (3.14)

Analogically, we shall obtain equations of diffusion:

ry—eé— (kM) =0, (3.15)
t

ra—o¢—[kw( | n(0,1—=1)¢(r)dr

=i

+ _'[I‘(O,t—t)S.(r)drﬁ» I\ ®,;(t—1,0);(t)dr)] . =0. (3.16)

= o0 »

Isotropic cases of equation of heat and mass flow lead, however, to the
relationships:

ori—ToS+K[ | o' (t—1)é;(r)dr

o 3

+ [ m'(t—-1S()de+ } 't—1)é(r)de]; =0,

(or,— ToS+ K [@"*é;;+m'sS +'x¢],; = 0), (3.17)

ro—oé—k|[ '| n(t—rt)é(r)dr+ ,[ I'(t—1)S(1)dt

X ac

+ }¢(f—f)éii(r)dr],ii=0, (3.18)

. €

(ro—¢—[kn*é+1"«S+ D *é];; = 0)
o
in which we have assumed:

‘Pilj(f“T,O) = ! (t—1) 0y,
Kl'j = Kél

?,;(t—1,0) = ®(t—1) 0y,
kij = ko;j, (3.19)

¥

h sfy = _f fit—1) fr(r)dr.

Let us notice that the operators of heat and mass flow equations have the
same forms.
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3.2. FREE ENERGY pA4

When the formulation of thermodiffusion problems based on the notion
of free energy, then histories of strain ¢;(s), temperature @ (s) and concentra-
tion c¢(s) will occur in the process as the independent histories. The history
vector has thus the following form:

T = [gij(s)’ @(S),C(S)]. (320)

Free energy, which is here a basic functional and is determined as
follows:

{\

eA=¢

s

(Az('—S) A% (1), (3.21)

0

is connected with internal energy by the relation:

0A =p /}/ (A (t—s); A (1))—o0s ; (A (t—s); A (1)

s=0 s=0
= 0./ (A% (t—s3); A2(1)). (3:22)
s=0
In this case the final inequality and the generating equations have the

following forms:

O .
_jiM q:¥

—QA QS@-FQMC-!—O’U i ’i_(T)z
0

>0, (3.23)
oA = 0. (A2(t—3); A2 (1)),

0;j= P (A*(t—9);A%(t)), —oS = F (A*(t—s); A%(1)), (3.24)
s=0 s=0
M= M (A*(t—s); A% (1), Jji= 7 (grad M), q;= 2 (grad @).
s=0 s=0 s=0
Confining ourselves to the linear problems, we approximate the function-
al of free energy only by the linear and square functionals to get:

04 = Ao+ | D;j(t—1)€;(r)de
+ tf B*t—1)O(@dt+ | n(t—1)i(r)dr

-+ 3 | Eija(t =7, =1)6;;(7) 4y (¢) drdr’

113

+ [ @2 (t—1,t=1)4;(x) O (v') drde’



Thermodiffusion in viscoelastic solids 39

+ H P(t—1,t—1)¢(1) O (¢)) drdt’

t

[f m*(t—1,t—7) O (1) O (') drdr’

1
t32

#2 JT nte—e e

+ i‘f D;i(t—1,t—1);(r) (7)) drdr’ + o(ed). (3.25)

Like previously, pA, is free energy in the reference configuration, D;;, 2
n, Ej, @f, m*, n% I, @, are the relaxation functions, determining physical
properties of the material. The functional (3.25) being differentiated is put to
inequality (3.23) from which, after a suitable arrangement, we obtain the
following generating equations for:

1. Stress tensor

t

0:;(t) = Dy (0)+ | Ejju(t—1,0)é(t)de

=00

t t

+ [ ¢50,t—1)0()di+ | @;(0,t—71)¢(r)dr. (3.26)

2. Entropy

—oS(t) =0+ [ ¢i(t—1,00&;(t)de

+ T[‘mz(t—r,O)@(t)dT+ f[ P(t—1,0)¢(t)dr.  (3.27)

- U - QU

3. Chemical potential

M(t) = n(0)+ Yj n(0,t—1)¢é(r)de
+ ,[ 12(0,t—1) O (1) dt + t[ @,;(t—1,0);(t)dr.  (3.28)

| = 00 g

From the remaining components we obtain the following inequality:

t 0 ; ¢
5 (3.29)
3 fa, (t=1)é()dr+ Q2 —j;M,— B2 > ¢,

(To)2
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The dissipation function Q2 6ccurring in inequality (3.29), is determined
by the relation:
1% 0
QZ = 5 [j 5E,~jk,(I—T,I—T') SU(T) é’d(fl) deT,

g 5 L § o
- j_fE(p,-j(t—r,t—r)e,-j(r)@(r)drdr
t

12 8 5 o sk ,
+5 if 7™ (t—1,t=7)O (1) O (t)drdx

t

+ [I 5 Pult=7,1=7)E; ()¢ () dudr’

1 " _a_ ([ nA LT dd ’
.+2_j.£ P —1,t—1) ¢ (1) é(t') drde

DT SR O@ . (330

=X

Like in the previous case, from the analysis of the inequality (3.29) we
obtain limiting conditions for the linear part of the functional

0 i . 0

ED”(I‘*T)——O, 5ﬂ (t—‘L’)—O, En(t_r)*°0

and the relation

22>0 (3.31)

which is the basic constraint for the dissipation function Q2.

The form of physical equations determining both streams is not changed,
ie.,

ji=—kyM;, g =—K;6,. (3.32

The conjugate equations of mass and heat flows are obtained by the same
procedure. In this case, however, the applied physical equation does not
determine temperature (like in the former case) but entropy. The transforma-
tion yields a set of equations

0 ! $ .
Qr1+T0Q%[ [ @A —1,08,@)d+ [ m*(t—1,000 (t)dr

+ ‘j12(t—z,0)c'(r)dr]+(K,.,9,,),,.=o, (3.33)
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ra—o¢—ky[ [ n(0,t—1)0é(r)dr

+ f ?(0,t—1) O (1)dt + iftD,-j(r—r,O)éij(t)dt],,,,:O (3.34)

- 3

for the anisotropic material and
'
ory — TOQE[_J (Pz(t‘f)éjj(f)df

+ 3‘ m?(t—1) O (t)dt + 3' P(t—1)é(r)di+KO ; =0,

(3.35)
ro—oé—K|[ t[ nt—r1)é(r)dr+ tj P(t—1)0(t)dt+ '| (1 —1)€;(t)dr]
~x == 5 ~x
for the isotropic material. .
In the latter case the relaxation functions have the forms:
@5(t—1,0) = @*(t—1)8;, D;;(t—1,0) = ®(1—1)9;;, (336

iy
In both equations the operators are different, contrary to the previous
case.
The set of coupled thermodiffusion equations is obtained after substitut-
ing the equation determining the stress tensor (3.34) or (3.35) to the

momentum equations. In the case of isotropy we obtain the following set of
equations:

Il*dui,jj'+()~+#)*d“j,ji"'QFi_)’T*d@,i_Vc *dC; = oi;,

~

Bz 7;);—1[% *du;+m? «dO + 1> 5 dC)+ kO ;; = 0, (3.37)

ri—oé—k[nxdC+1?xdO+y, *du; ;1 =0
which, after completion with the initial and boundary conditions, determines
the boundary problem of viscoelastic thermodiffusion. The boundary condi-
tions of heat and mechanical parts have the classical form, whereas in the
diffusive part we most often use chemical potential and its gradient that
determines the mass exchange with the surroundings.

Symbol f; *df, in equations (3.37) denotes Stieltjes convolution, whereas
the physical equation determining the stress tensor in the isotropic body has
the form o;; = 2u«de;j+ A xdeyd;j—y, xdcd;;—yr xdOS;; where u, 4, 7,
=a.(34A+2p), yr = a7 (34+2u) are the relaxation functionals. °
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« 3.3. POTENTIAL oK

The next form of thermodiffusion equations is obtained by using as the
basic functional the functional ¢K, defined by the relation oK = gA+oMc,
connected with free energy pA. Then the process is determined by histories of
strain g;(s), temperature @ (s) and chemical potential M(s). The vector of

history A® in the space of history of the process has the form:
T = [Sij (S),@(S), M(S)]
and the functional 9K is determined by the relation:
oK = o A (A*(t—s5); A°(1))
s=0

/ (A2 (t—s); A%(0) —oc M (A2 (t—s); A2 (2)).

0 s=0

Qi

=@ -

s

In such an approach mass and heat exchanges are determined by:

the final inequality

4 ) ) e
—QK_QS@_QCM+0ijéij—j;Mi—q i >
T (1)
and the generating equations
oK = ¢ A (A*(t—5); A° (1)),

s=0

oy = P (4= £ ),

s=0

K&

I (A (t—s); A1), —c=

0 s

s

(A3(t—s) A% (1)),

N

8

2 (grad @), j; = } (grad M).

s=0 s=0

(3.38)

(3.39)

(3.40)

(3.41)

Taking the previous assumptions concerning the functional ¢K, ie.,
limiting ourselves to its approximation by the square functional, we obtain a

new set of linear physical equations of viscoelastic thermodiffusion:

oK = 0Ko+ | Djj(t—1)é;(t)dr+ | B2 (t—1) O (1)de
- 'f 3 (t—1) M(t)de

- o

l . . ’ ’
2 H Eij(t—1,t—1)€; (1) € () drde

g <
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t

+ fwfj(r—r,r—r’)e‘,-j(r)@(r')drdr'

tﬂ (t—1,t—1) 0O (1) O (t))drdr’

NIN

j[ n(t—1,t—1)M(t) M (t") drdt’

39} |

+ H B(t—t,t—1)M(1) O (') drdr’

[ ¢ 5
+ [f %t —1,t—1);(x) M (') drdr’'+ O (&?). (342

Expression (3.42) is the sought for approximation of the functional oK by
the linear and square functional. 9K, denotes the initial value of the
functional oK in the reference configuration. D;;, % n°, E;j, @, @7, m% n?,
I® are the successive sets of relaxation functions the values of which should
be determined experimentally.

The set of generating equations is obtained from the inequality (3.40) after
substituting the derivative 9K of the functional (3.42) and a suitable arrange-
ment of the obtained inequality. As a result we obtain the following set of
physical equations for:

stress tensor

O'”(t) = DU(O)+ I Eijk,(f—‘c,())ékl(‘[)d‘[

t t

+ [ 050, t=00@dr+ [ 50,i-1)M()dr, (343)

=00 x

entropy

+ ‘ 2(t—1,000 (1)dt + ‘ B(t—t,00M(t)dt, (3.44)

e ¢ x

concentration

—oc(t) = 2 (0)+ | O (t—7,0)6;(1) dr

+ [ n*0,r—1)M(r)dr+ l‘ P(,t—1)O(1)dr, (3.45)
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and from the remaining component of the process the inequality

t t

| gb,,( 7)€ () dr+ | (f—;ﬁz(t—r)@'(z)dr

=00 -
t

+ j B (t—1)M(t)dt+ Q23 —j;M ;-

40,
T )2 >0. (3.46)

At the same time the new dissipation function ©* will take the following
form

& ¢ . 9 i .
=3 If EEij,,,(t—r,t—t’)a,-j(r)ek,(t)drdr

= ¥

H (p,}(t—-‘[ t—1)§,(r) O () drdr’

“,

+ ”%(DSJ(’ T)f.,(T)M( )dtdt’
+3 3 ] 2 m (=5, 1=7) O (1) O (v) dedr’
1 14 f\ ~
+3 [ g t—nt—v) M) M(x)dude
+ [ %’3(r—r,r—r’)M(r)@(r')dzdr'. (3.47)

=

By the same argumentation as that in the previous section we obtain the
constraints for:

relaxation function

0 - ? s B ¢ 4 "
ED“({—T)_O’ ‘(,SI'B (t—1) =0, 57[ (t—1) =

expression determining the dissipation:

Q> 0. (3.48)

Finally we obtain the equations for the fluxes of mass and heat
—k;M ;g = —K;0,;. (3.49)

The presented set of physical equations for viscoelastic thermodiffusion
allows us to derive the coupled equations for the process considered. They
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are obtained by substituting the generating equations into balances of mass,
momentum and energy and by linearization of the conductivity equation.
The heat and diffusion equations have the following forms for:

anisotropic body

" 1 t .
Qr1+'IbQé[ [ 03(t—1,008,(@)dt+ [ m(1—7,000 (t)de

-

KT i[ 13(t—r,0)M(t)d1]+(K.-,-@,,-),.'=0,

r2+§t[ [ n(t—1,0) M (t)dr + f 13(0,I—T)9(T)(1T

1
+ | @} (1—1,0)€;(r)dt ]+ (kM ), =0, (3.50)
isotropic material:

0

Qh+ﬂw3[

_'f‘ P2 (t—1)é; () dr + l\ m?(t—1) 0 (1)dr

=% b

+ __q‘ P(t—t1)M(t)dt]+KO j; =0,

r2+§[ " nd(t—1) M (1) dr+ 'Q PB(t—1)0O (1) dt

s

P }¢3(r—z)s,.,.(r)dr]+kM,,.,.=o (3.51)

et ©

and

¢ . :
Qr1+ 'Ib:;[(pz*é,,+m2*@+l3*M]+K9’” = 0,
o

0 . 3
rat = [0« M+ 5O+ 048] +kM ;5 = 0.

)l

Like in the case of the first coupled equations (3.14) and (3.16), we see
that the operators of the equations of diffusion and heat flow are similar.
Similarity of these operators determines the essential physical property of the
conjugate equations of thermodiffusion.

For the mechanical part the equation is obtained by substituting the
equations determining the stress tensor into the equations of momentum
balance. The set of the equations of linear viscoelastic thermodiffusion has
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then the form:

prdu; i+ (A+p) *du; i+ oF; —yr #d@ ; —y, xdM ; —gii; = 0,

0
erit+eTo [@, *dey+m*xdO + P xdM]+ KO ; = 0, (3.52)

0
r2+ 5["3 *dM+13*d@+¢3*d8“]+kM'ii = 0

It is a set of five differential-integral equations, where three components
of the displacement vector, temperature and chemical potential are the
searched quantities.

By introducing the initial and boundary conditions into the set of
equations (3.52), we can formulate the full initial-boundary problems. The
simplest problems are determined by the displacement, temperature and
chemical potential fields on the respective parts of the end.

The procedure presented in this section, which gave three equivalent
approaches to the boundary problems of thermodiffussion, can be developed
using new thermodynamic functionals determined on the history of stress
tensor. These problems will not be studied since they do not introduce any
new ideas.
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